豐富的教學(xué)特色搶先看
著重講授大數(shù)據(jù)系統(tǒng)技術(shù),包括大數(shù)據(jù)系統(tǒng)的組成、數(shù)據(jù)存儲(chǔ)、數(shù)據(jù)處理、數(shù)據(jù)分析、數(shù)據(jù)可視化等方面。
課程設(shè)置了大量的實(shí)踐操作環(huán)節(jié),幫助學(xué)員掌握大數(shù)據(jù)系統(tǒng)管理、操作技能。
我們聘請(qǐng)了一批經(jīng)驗(yàn)豐富的大數(shù)據(jù)系統(tǒng)工程師作為課程講師,能夠?yàn)閷W(xué)員提供專業(yè)的指導(dǎo)。
Volume(容量大)。Volume是指大數(shù)據(jù)巨大的數(shù)據(jù)量與數(shù)據(jù)完整性。十幾年前,由于存儲(chǔ)方式、科技手段和分析成本等的限制,使得當(dāng)時(shí)許多數(shù)據(jù)都無(wú)法得到記錄和保存。即使是可以保存的信號(hào),也大多采用模擬信號(hào)保存,當(dāng)其轉(zhuǎn)變?yōu)閿?shù)字信號(hào)的時(shí)候,由于信號(hào)的采樣和轉(zhuǎn)換,都不可避免存在數(shù)據(jù)的遺漏與丟失。那么現(xiàn)在,大數(shù)據(jù)的出現(xiàn),使得信號(hào)得以原始的狀態(tài)保存下來(lái),數(shù)據(jù)量的大小已不是最重要的,數(shù)據(jù)的完整性才是重要的。
長(zhǎng)沙博為峰大數(shù)據(jù)課程
課程大綱 | 課題名稱 | 課程內(nèi)容 |
前導(dǎo)基礎(chǔ) | 數(shù)據(jù)分析入門 |
數(shù)據(jù)分析入門 ;數(shù)據(jù)分析的意義;數(shù)據(jù)分析的流程控制 ;數(shù)據(jù)分析的思路與方法 |
邏輯為先—XMIND |
xmind簡(jiǎn)介與基本使用;學(xué)習(xí)方法課堂案例;滴答拼車實(shí)戰(zhàn)演練;其他思維導(dǎo)圖介紹 |
|
專業(yè)展現(xiàn)—PPT |
專業(yè)展現(xiàn)——PPT;基本簡(jiǎn)介;幾個(gè)不得不說的真相;經(jīng)驗(yàn)分享;實(shí)戰(zhàn)動(dòng)畫 |
|
數(shù)據(jù)分析工具安裝與環(huán)璄配置 |
Excel工具的安裝、配置與環(huán)璄測(cè)試;Power BI工具的安裝、配置與環(huán)璄測(cè)試;Tableau工具的安裝、配置與環(huán)璄測(cè)試;MySQL數(shù)據(jù)庫(kù)的安裝、配置與環(huán)璄測(cè)試;SPSS數(shù)據(jù)挖掘工具安裝、配置與環(huán)璄測(cè)試;SAS數(shù)據(jù)挖掘工具安裝、配置與環(huán)璄測(cè)試;Python開發(fā)工具的安裝、配置與開發(fā)環(huán)璄測(cè)試 |
|
Linux基礎(chǔ)應(yīng)用之大數(shù)據(jù)必知必會(huì) |
虛擬機(jī)的安裝配置;虛擬機(jī)網(wǎng)絡(luò)配置;安裝Linux;利用SSH連結(jié)Linux;Linux基礎(chǔ)命令;Linux系統(tǒng)管理 |
|
數(shù)據(jù)分析的Python語(yǔ)言基礎(chǔ) |
python課程的目的;使用JupyterLab;python數(shù)據(jù)類型 ;元組、列表、字典;python分支結(jié)構(gòu) ;python字符串處理+隨機(jī)函數(shù);pthon循環(huán)結(jié)構(gòu);python面向過程函數(shù)操作;python面向?qū)ο? |
|
問題定義與數(shù)據(jù)獲取 | 數(shù)據(jù)分析項(xiàng)目流程 |
問題界定;問題拆分 ;指標(biāo)確定;數(shù)據(jù)收集;報(bào)告方案 ;趨勢(shì)預(yù)測(cè);數(shù)據(jù)分析;趨勢(shì)預(yù)測(cè);報(bào)告方案 |
問題的定義 |
邊界:明確問題的邊界;邏輯:確定業(yè)務(wù)的關(guān)鍵指標(biāo)和邏輯;定性分析與定量分析 |
|
分析問題的模型 |
基于經(jīng)典的模型:5W2H;SWORT;4P管理模型;CATWOE;STAR原則、波士頓5力模型。 基于業(yè)務(wù)的模型:用戶畫像;銷售影響因素;市場(chǎng)變化因素;AARRR流量模型;金定塔思考方法 |
|
數(shù)據(jù)清洗與處理 |
數(shù)據(jù)科學(xué)過程 ;數(shù)據(jù)清洗定義;數(shù)據(jù)清洗任務(wù);數(shù)據(jù)清洗流程;數(shù)據(jù)清洗環(huán)境;數(shù)據(jù)清洗實(shí)例說明;數(shù)據(jù)標(biāo)準(zhǔn)化;數(shù)據(jù)格式與編碼;數(shù)據(jù)清洗常用工具;數(shù)據(jù)清洗基本技術(shù)方法;數(shù)據(jù)抽取;數(shù)據(jù)轉(zhuǎn)換與加載 |
|
內(nèi)部數(shù)據(jù)的獲取 |
產(chǎn)品數(shù)據(jù);用戶數(shù)據(jù);行為數(shù)據(jù) ;訂單數(shù)據(jù) |
|
外部公開數(shù)據(jù) |
開放網(wǎng)站;政務(wù)公開數(shù)據(jù);數(shù)據(jù)科學(xué)競(jìng)賽;數(shù)據(jù)交易平臺(tái);行業(yè)報(bào)告;指數(shù)平臺(tái) |
|
Web網(wǎng)站數(shù)據(jù)抓取 |
財(cái)經(jīng)數(shù)據(jù)抓取;投資數(shù)據(jù)抓取;房產(chǎn)數(shù)據(jù)抓??;輿情數(shù)據(jù)抓取;娛樂數(shù)據(jù)抓??;新媒體數(shù)據(jù)抓取 |
|
數(shù)據(jù)查詢與提取 | SQL基礎(chǔ)操作 |
建庫(kù) ;建表;建約束 ;創(chuàng)建索引;添加、刪除、修改數(shù)據(jù) |
利用SQL完成數(shù)據(jù)的預(yù)處理 |
缺失值處理:對(duì)缺失數(shù)據(jù)行進(jìn)行刪除或填充;重復(fù)值處理:重復(fù)值的判斷與刪除;異常值處理:清除不必要的空格和異常數(shù)據(jù) |
|
利用SQL進(jìn)行業(yè)務(wù)數(shù)據(jù)查詢 |
利用SQL進(jìn)行簡(jiǎn)單的業(yè)務(wù)數(shù)據(jù)查詢;利用SQL完成復(fù)雜條件查詢;利用多表關(guān)聯(lián)完成復(fù)雜業(yè)務(wù)查詢;利用嵌套子查詢完成復(fù)雜業(yè)務(wù)數(shù)據(jù)分析 |
|
高級(jí)SQL分析 |
聚合、分組、排序;函數(shù);行列轉(zhuǎn)換;視圖與存儲(chǔ)過程 |
|
業(yè)務(wù)指標(biāo)統(tǒng)計(jì)分析 |
業(yè)務(wù)數(shù)據(jù)表關(guān)聯(lián)查詢及查詢;結(jié)果縱向融合;常業(yè)務(wù)需求數(shù)據(jù)寬表構(gòu)建;查詢處理復(fù)雜業(yè)務(wù) |
|
數(shù)理統(tǒng)計(jì)基礎(chǔ) | 數(shù)據(jù)分析的數(shù)學(xué)基礎(chǔ) |
計(jì)算和連續(xù)函數(shù)的性質(zhì);導(dǎo)數(shù)/微分的概念和運(yùn)算法則;積分的概念和運(yùn)算法則;冪級(jí)數(shù)、泰勒級(jí)數(shù)、傅里葉級(jí)數(shù)、傅里葉變換;向量的概念和運(yùn)算;矩陣的轉(zhuǎn)置、乘法、逆矩陣、正交矩陣、SVD奇異值分解、特征值;行列式的計(jì)算和性質(zhì);凸優(yōu)化 |
Python數(shù)據(jù)分析 | 基于Numpy庫(kù)的Python數(shù)據(jù)科學(xué)計(jì)算 |
創(chuàng)建數(shù)組;切片索引;數(shù)組操作;字符串函數(shù);數(shù)學(xué)函數(shù);統(tǒng)計(jì)函數(shù) |
基于Pandas庫(kù)的Python數(shù)據(jù)處理與分析 |
直方圖:探索變量的分布規(guī)律;條形圖:展示數(shù)值變量的集中趨勢(shì);散點(diǎn)圖:表示整體數(shù)據(jù)的分布規(guī)律;箱線圖:表示數(shù)據(jù)分散性,中位數(shù);提琴圖:分位數(shù)的位置及數(shù)據(jù)密度;回歸圖:尋找數(shù)據(jù)之間的線性關(guān)系;熱力圖:表未數(shù)值的大小或者相關(guān)性的高低 |
|
大數(shù)據(jù)分析 | HIVE大數(shù)據(jù)查詢平臺(tái)搭建 |
大數(shù)據(jù)概述;數(shù)據(jù)集群; Hadoop 架構(gòu);Hive開發(fā)環(huán)璄搭建 |
HIVE與MySQL進(jìn)行數(shù)據(jù)交換 |
從MySQL中導(dǎo)入數(shù)據(jù)到Hive;從Hive導(dǎo)出數(shù)據(jù)到MySQL |
|
HQL海量業(yè)務(wù)數(shù)據(jù)需求查詢 |
Hive數(shù)倉(cāng);HQL 數(shù)據(jù)查詢基礎(chǔ)語(yǔ)法 |
|
HQL海量業(yè)務(wù)數(shù)據(jù)需求查詢 |
從MySQL中導(dǎo)入數(shù)據(jù)到Hive;從Hive導(dǎo)出數(shù)據(jù)到MySQL |
|
HQL業(yè)務(wù)數(shù)據(jù)指標(biāo)統(tǒng)計(jì)分析 |
分區(qū)表;分桶表;關(guān)聯(lián)表;數(shù)據(jù)查詢 |
|
HQL海量數(shù)據(jù)查詢優(yōu)化 |
內(nèi)置函數(shù)及開窗函數(shù);特殊類型數(shù)組查詢方式;HQL 查詢語(yǔ)句優(yōu)化技巧 |
|
建模與數(shù)據(jù)挖掘 | 數(shù)據(jù)挖掘與分析算法 |
描述統(tǒng)計(jì);相關(guān)分析;判別分析;方差分析;時(shí)間序列分析;主成分分析;信度分析 ;因子分析;回歸分析;對(duì)應(yīng)分析;列聯(lián)表分析;聚類分析 |
數(shù)據(jù)挖掘工具SPSS |
從MySQL中導(dǎo)入數(shù)據(jù)到Hive;從Hive導(dǎo)出數(shù)據(jù)到MySQL |
|
HQL海量業(yè)務(wù)數(shù)據(jù)需求查詢 |
課程規(guī)劃與簡(jiǎn)介;數(shù)據(jù)挖掘項(xiàng)目生命周期;簡(jiǎn)單的統(tǒng)計(jì)學(xué)基礎(chǔ) ;用Modeler試手挖掘流程;數(shù)據(jù)挖掘的知識(shí)類型 6、商業(yè)分析基礎(chǔ)簡(jiǎn)介;信度分析;因子分析;回歸分析 ;對(duì)應(yīng)分析;列聯(lián)表分析 ;聚類分析 |
|
數(shù)據(jù)挖掘工具SAS |
SAS概述:SAS簡(jiǎn)介與教育版安裝;SAS概述:教育版基本使用;SAS編程基礎(chǔ) ;SAS編程基礎(chǔ)-循環(huán);SAS數(shù)據(jù)集操作1-合并;SAS數(shù)據(jù)集操作72-排序與對(duì)比;SAS數(shù)據(jù)集操作3-查重與篩選;練習(xí)-斐波那契數(shù)列;練習(xí)-百元百雞問題 |
|
人工智能預(yù)測(cè)算法 | 人工智能實(shí)戰(zhàn)十大預(yù)測(cè)數(shù)據(jù)算法 |
機(jī)器學(xué)習(xí)入門;sk-learn機(jī)器學(xué)習(xí)庫(kù);十大預(yù)測(cè)算法原理與使用場(chǎng)景;算法調(diào)用、參數(shù)設(shè)置;特征選擇、特征工程;回歸預(yù)測(cè)模型實(shí)戰(zhàn);分類預(yù)測(cè)試模型實(shí)戰(zhàn) ;聚類模型實(shí)戰(zhàn);集成學(xué)習(xí) ;模型優(yōu)化 |
可視化商業(yè)報(bào)告撰寫 | 商業(yè)智能與可視化分析實(shí)戰(zhàn) |
案例-1:BI電商數(shù)據(jù)市場(chǎng)分析項(xiàng)目實(shí)戰(zhàn) 案例-2:BI電商數(shù)據(jù)客戶分析項(xiàng)目實(shí)戰(zhàn) 案例-3:BI可視化關(guān)于公司運(yùn)營(yíng)情況的相關(guān)分析 案例-4:基于Tableau的客戶主題對(duì)客戶進(jìn)行合理分群 案例-5:基于Tableau的營(yíng)銷主題分析如何衡量媒體的營(yíng)銷價(jià)值 案例-6:基于Tableau的保公司索賠情況分析 |
數(shù)據(jù)可視化報(bào)告撰寫 |
數(shù)據(jù)可視化的概念;數(shù)據(jù)可視化的意義;數(shù)據(jù)可視化的對(duì)比;數(shù)據(jù)可視化的分類;數(shù)據(jù)可視化圖表舉例 ;數(shù)據(jù)可視化應(yīng)用領(lǐng)域;數(shù)據(jù)可視化步驟;數(shù)據(jù)可視化工具梯度;圖表呈現(xiàn)流程;數(shù)據(jù)報(bào)告撰寫 |
|
實(shí)戰(zhàn):O2O電商平臺(tái)功能優(yōu)化效果評(píng)估及可視化數(shù)據(jù)分析報(bào)告撰寫 |
了解電商業(yè)務(wù)背景;、以客戶分析為應(yīng)用場(chǎng)景,對(duì)數(shù)據(jù)進(jìn)行加載、清洗、分析及模型建立;以貨品分析為應(yīng)用場(chǎng)景,針對(duì)品類銷售及商品銷售進(jìn)行分析;以流量分析為應(yīng)用場(chǎng)景,針對(duì)流量渠道及關(guān)鍵詞做有效分析;根據(jù)業(yè)務(wù)實(shí)際背景做輿情分析;將分析結(jié)果及建議制成報(bào)告進(jìn)行發(fā)布 |
|
商業(yè)分析項(xiàng)目實(shí)戰(zhàn) | 五大商業(yè)項(xiàng)目實(shí)戰(zhàn) |
商業(yè)項(xiàng)目實(shí)戰(zhàn)01:電商數(shù)據(jù)分析——分析方式之漏斗模型及數(shù)據(jù)量化 商業(yè)項(xiàng)目實(shí)戰(zhàn)02:電商用戶行為與營(yíng)銷模型實(shí)戰(zhàn) 商業(yè)項(xiàng)目實(shí)戰(zhàn)03:金融風(fēng)控模型的構(gòu)建與分析實(shí)戰(zhàn) 商業(yè)項(xiàng)目實(shí)戰(zhàn)04:展會(huì)電話邀約項(xiàng)目數(shù)據(jù)分析實(shí)戰(zhàn) 商業(yè)項(xiàng)目實(shí)戰(zhàn)05:零售行業(yè)數(shù)據(jù)分析 |
你可能關(guān)心的大數(shù)據(jù)問題
大數(shù)據(jù)營(yíng)銷分析師。大數(shù)據(jù)營(yíng)銷分析師負(fù)責(zé)利用大數(shù)據(jù)技術(shù)分析客戶行為和市場(chǎng)需求,為市場(chǎng)營(yíng)銷活動(dòng)提供支持。大數(shù)據(jù)營(yíng)銷分析師需要具備一定的大數(shù)據(jù)處理、分析和應(yīng)用能力,同時(shí)還需要具備市場(chǎng)營(yíng)銷、客戶分析等方面的能力。
可視化工具開發(fā)??梢暬_發(fā)就是在可視化工具提供的圖形用戶界面上,通過操作界面元素,有可視化開發(fā)工具自動(dòng)生成相關(guān)應(yīng)用軟件,輕松跨越多個(gè)資源和層次連接所有數(shù)據(jù)。過去,數(shù)據(jù)可視化屬于商業(yè)智能開發(fā)者類別,但是隨著Hadoop的崛起,數(shù)據(jù)可視化已經(jīng)成了一項(xiàng)獨(dú)立的專業(yè)技能和崗位。
好機(jī)構(gòu),師資說話
湖南長(zhǎng)沙大數(shù)據(jù)培訓(xùn)
課程背景
在當(dāng)今數(shù)字化時(shí)代,大數(shù)據(jù)技術(shù)的快速發(fā)展使得大數(shù)據(jù)分析成為企業(yè)發(fā)展的重要戰(zhàn)略。為了適應(yīng)市場(chǎng)需求,我們精心設(shè)計(jì)了湖南長(zhǎng)沙大數(shù)據(jù)培訓(xùn)課程,旨在培養(yǎng)具備大數(shù)據(jù)分析能力的專業(yè)人才。
課程特色
1、涵蓋大數(shù)據(jù)基礎(chǔ)知識(shí)和技術(shù)應(yīng)用;
2、結(jié)合實(shí)際案例進(jìn)行案例分析和實(shí)操演練;
3、提供實(shí)習(xí)機(jī)會(huì),幫助學(xué)員將理論知識(shí)應(yīng)用到實(shí)際工作中。
課程目標(biāo)
1、掌握大數(shù)據(jù)處理和分析的基本原理;
2、熟練掌握大數(shù)據(jù)處理工具和技術(shù);
3、能夠運(yùn)用大數(shù)據(jù)分析方法解決實(shí)際問題。
學(xué)習(xí)對(duì)象
1、對(duì)大數(shù)據(jù)技術(shù)感興趣的學(xué)生和從業(yè)人員;
2、希望提升大數(shù)據(jù)分析能力的職場(chǎng)人士。
課程內(nèi)容
1、大數(shù)據(jù)概念及應(yīng)用案例分析;
2、大數(shù)據(jù)采集、清洗和存儲(chǔ)技術(shù);
3、大數(shù)據(jù)分析算法及工具的使用。
師資力量
我們擁有一支經(jīng)驗(yàn)豐富、業(yè)內(nèi)專業(yè)的大數(shù)據(jù)講師團(tuán)隊(duì),能夠?yàn)閷W(xué)員提供系統(tǒng)、全面的培訓(xùn)服務(wù)。
教學(xué)質(zhì)量
我們以學(xué)員的學(xué)習(xí)效果為核心,注重實(shí)踐操作和案例分析,致力于提升學(xué)員的學(xué)習(xí)體驗(yàn)和技能水平。
服務(wù)水平
我們提供個(gè)性化的課程輔導(dǎo)和學(xué)習(xí)指導(dǎo),確保每位學(xué)員都能夠有所收獲。
學(xué)習(xí)時(shí)長(zhǎng)
我們的培訓(xùn)課程時(shí)長(zhǎng)為兩個(gè)月至半年不等,靈活安排學(xué)習(xí)時(shí)間,方便學(xué)員自主選擇。
收費(fèi)范圍
我們的課程收費(fèi)范圍在4000-15000元之間,具體收費(fèi)標(biāo)準(zhǔn)根據(jù)課程內(nèi)容和時(shí)長(zhǎng)而定。
學(xué)習(xí)收獲
通過本課程的學(xué)習(xí),學(xué)員將獲得扎實(shí)的大數(shù)據(jù)技能和知識(shí),為未來(lái)的就業(yè)或職業(yè)發(fā)展打下堅(jiān)實(shí)的基礎(chǔ)。
總結(jié)
以上信息僅供參考,實(shí)際情況以到校咨詢?yōu)闇?zhǔn)??陕?lián)系在線客服,預(yù)約免費(fèi)體驗(yàn)課。我們期待您的加入,一起探索大數(shù)據(jù)世界的無(wú)限可能!
培訓(xùn)項(xiàng)目:軟件測(cè)試培訓(xùn)、Web前端培訓(xùn)、Java全棧開發(fā)培訓(xùn)、Python全棧開發(fā)培訓(xùn)、超全棧開發(fā)培訓(xùn)、人工智能培訓(xùn)、數(shù)據(jù)分析培訓(xùn)、.Net培訓(xùn)、大數(shù)據(jù)云計(jì)算培訓(xùn)
¥詢價(jià)1393人關(guān)注
¥詢價(jià)1370人關(guān)注
¥詢價(jià)1595人關(guān)注
¥詢價(jià)2747人關(guān)注
¥詢價(jià)1732人關(guān)注
¥詢價(jià)4283人關(guān)注
¥詢價(jià)3080人關(guān)注
¥詢價(jià)1487人關(guān)注
¥詢價(jià)2049人關(guān)注
¥詢價(jià)2794人關(guān)注